歡迎來到華中農業大學資源與環境學院現在時間是:
                  訪問舊版
                  當前所在位置: 首頁 -- 師資隊伍 -- 土壤與植物營養系 -- 教授 -- 正文
                  教授
                  胡紅青
                  發布人:發布時間:2016-05-19

                  姓名:胡紅青   職稱:教授

                  E-mailhqhu@mail.hzau.edu.cn;hqhu04@126.com;13871289448@139.com

                  研究方向:土壤化學與礦物學、植物營養、土壤肥力、土壤環境修復

                  個人簡介


                      1966年10月生,1988、1991、1997年在華中農業大學獲得土壤農化專業學士、土壤學碩士和博士學位;1991年7月留校任教,2003年11月受聘教授,2004年4月被聘為博士生導師,2005年入選教育部新世紀優秀人才支持計劃,2007年12月獲聘三級崗。


                  進修與留學經歷:

                      2011年7月和2016年9月 德國Juelich農業圈研究所2次邀請講學;2010年6月– 7月,美國Texas A & M大學合作研究;2005年5月和2007年10月韓國忠北國立大學2次邀請講學;2001年8月-2002年8月 西澳大利亞大學訪問學者;2000年1月- 8月 意大利Napoli大學合作研究。


                  社會兼職:

                      Journal of Environmental Sciences編委(2013-)、Agricultural Sciences編委(2009-)、Journal of Food, Agriculture and Environment編委(2004-2014)、植物營養與肥料學報編委(2004- )、Journal of Agriculture,Food and Development主編(2015-)。

                      中國土壤學會土壤環境專業委員會委員(2004-)、土壤肥力與肥料專業委員會委員(2004-2012)、中國環境科學學會高級會員(2014-)、中國植物營養與肥料學會會員、武漢市海綿城市建設專家委員會委員(2016-)、武漢市環保局城市土壤污染調查評審專家(2013-)、國家自然科學基金委員會項目通訊評審專家(2004-)、科技部國際科技合作項目評審專家(2009-)等。



                  獲獎:

                  2005 教育部自然科學二等獎、湖北省自然科學三等獎

                  2000 湖北省科技進步三等獎

                  1995 教育部科技進步二等獎

                  土壤肥料學湖北省精品課程主持人(2010-2014)、參加人(2015-)。

                  土壤化學校級優秀課程主持人。農業資源與環境專業綜合改革湖北省教改項目(2014-2016)主持人。土壤肥料學校級優秀團隊負責人。

                  指導湖北省優秀博士學位論文1篇、省級優秀大學生科技成果8項。

                  副主編教材《環境土壤學》;參編教材《土壤學》、《土壤肥料學》、《土壤化學》。

                  校教書育人先進個人(2010)、優秀研究生導師(2010)、師德先進個人(2014)、教學質量一等獎(2015)。

                  農村與生態環境學報、農業環境科學學報、應用生態學報、植物營養與肥料學報、Journal of Integrative Agriculture等優秀審稿人。


                  教學、科研:

                  主講課程:土壤學、土壤肥料學、土壤化學、農業環境學、土壤學實習、資源調查與評價實習、農業資源與環境專業導論、學術道德規范、土壤與環境等。


                  主要主持課題:

                  可變電荷與恒電荷土壤根際表面化學特性,NSFC, 2004-2006

                  不同土壤膠體和礦物上Bt蛋白的吸附與殘留,博士點基金, 2006-2008

                  轉Bt作物的根際效應與Bt蛋白殘留,教育部新世紀優秀人才支持計劃, 2006-2008

                  土壤和礦物對Bt蛋白的吸附機理及影響因素,NSFC, 2007-2009

                  活化磷礦粉對農田土壤重金屬的固定研究與示范,863課題, 2007-2010

                  三峽庫區消落帶土壤的性狀變化,科技部水專項, 2010-2012

                  活化磷礦粉對重金屬的鈍化機理,教育部博士點基金,2010-2012

                  重金屬-磷-有機配體的相互作用及其環境意義,NSFC, 2011-2013

                  蓖麻對土壤銅的植物修復與土壤管理,教育部專項基金, 2012-2013

                  重金屬污染的化學鈍化與應用技術,863課題, 2012-2015

                  三峽庫區小江流域水體富營養化控制,水利部, 2014-2016

                  蓖麻對銅的富集機理和影響因素,NSFC, 2014-2017

                  中南地區土壤重金屬Cd, Ni和As的鈍化與調控,國家科技支撐計劃, 2015-2019

                  再生稻高產土壤培肥與耕作,國家重點研發計劃-糧食豐產工程, 2016-2020


                  發表論文:

                  已發表論文264篇,其中SCI收錄90余篇。近年發表的SCI論文主要有:

                  1.Influence of phenolic acids on phosphorus mobilization in acidic and calcareous soils. Plant Soil, 2005. 268(1):173-180

                  2.Effect of selected organic acids on cadmium sorption by variable- and permanent-charge soils. Pedosphere, 2007. 17(1): 117-123

                  3.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by soil minerals: Effects of organic acid ligands. Applied Clay Science, 2007. 37, 201-206.

                  4.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by some Chinese soils: effects of organic acid ligands addition. Plant and Soil, 2007. 296: 35-41.

                  5.Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by minerals: effects of inorganic salts. European Journal of Soil Science.2008.59: 216-221

                  6.Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. Kustaki by clay minerals. Applied Surface Sci., 2009.255(8):4551-4557

                  7. Influences of low molar mass organic acids on the adsorption of Cd2+and Pb2+by goethite and montmorillonite. Appl Clay Sci, 2010. 49 (3): 281-287

                  8. Mechanism of lead immobilization by oxalic-activated phosphate rocks. J Environ Sci. 2012. 24(5): 919-925

                  9. Sorption of the toxin of Bacillus thuringensis subsp. Kurstaki by soils: effects of iron and aluminum oxides. European Journal of Soil Science. 2012. 63(5): 565-570

                  10. Impacts of inorganic ions and temperature on lead adsorption onto variable charge soils. Catena, 2013.109:103-109

                  11. Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. J Soils Sediments.2014.14: 1378-1384

                  12. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences. 2015. 28(1): 64-73

                  13. Immobilization and phytotoxicity of Pb in contaminated soil amended with gamma-polyglutamic acid, phosphate rock, and gamma-polyglutamic acid-activated phosphate rock. Environmental Science and Pollution Research. 2015. 22(4): 2661-2667

                  14. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere, 2015. 25(3): 405-411.

                  15. Dual color fluorescence quantitative detection for mercury in soil with grapheme oxide and dye-labeled nucleic acids. Analytical Methods. 2015. 7(9): 3827-3832

                  16. Adsorption of phosphate on pure and humic acid coated ferrihydrite. Journal of Soils and Sediments.2015.15(7):1500-1509

                  17. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. International Journal of Phytoremediation. 2016. 18(1): 33-40

                  18. Enhanced accumulation of Cd in castor (Ricinus Communis L.) by soil-applied chelators. International Journal of Phytoremediation. 2016. 18(7): 664-670

                  19. Effects of phosphate and citric acid on Pb adsorption by red soil colloids. Environmental Progress and Sustainable Energy. 2016. 35(4): 969-974

                  20. Phosphate adsorption on uncoated and humic acid-coated iron oxides. Journal of Soil and Sediments. 2016.16(7): 1911-1920

                  21. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environmental Technology. 2016. 37(21):2679-2686

                  22. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ Sci Pollut Res. 2016. 23: 15532-15543

                  23. Chemical immobilization of Pb, Cu and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res. 2016. 23: 16845-16856

                  24. Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite. International J Biological Macromolecules. 2016.92:1191-1196

                  25. Adsorption of Cu2+on montmorillonite and chitosan-montmorillonite composite toward acetate ligand and the pH dependence. Water, Air & Soil Pollution. 2016. 227(10): 1-10

                  26. Efficiency of several leaching reagents on removal of Cu, Pb, Cd and Zn from highly contaminated paddy soil. Environ Sci Pollut Res. 2016. 23(22): 23271-23280

                  27. Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: In vitro. Plant Cell, Tissue and Organ Culture. 2016. 128: 177-186

                  28. Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils. Soil Biology and Biochemistry. 2017. 108: 91-100

                  29. Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite : kinetic, thermodynamic and equilibrium studies. Applied Clay Science. 2017. 143:320-326

                  30. The effect of pH on the bonding of Cu2+and chitosan- montmorillonite composite. Intl. J Biol Macromolecules. 2017. 103: 751-757

                  31. Effects of sulphur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Environ Sci Pollut Res. 2017. 24(35): 27476-27483

                  32. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. J Environ Manage. 2017. 200:304-311

                  33. Influence of phosphorus fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.).Environ Sci Pollut Res. 2018.25(1):115-123

                  34. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ Sci Pollut Res. 2018, 25(12): 11875-11883

                  35. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphates as amendments. Chemosphere. 2018. 194: 579-587

                  36. Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: Extraction techniques and adsorption mechanism. Bull Environ Contamin & Toxicol. 2018, 100(5): 727-732

                  37. Identifying the characterization of functional groups and the influence of synthetic chelators and their effects on Cd availability and microbial biomass carbon in Cd contaminated soil. Intl J Phytoremed. 2018, 20(2): 168-174

                  38. Effects of exogenous sulfur on the growth and Cd uptake of Chinese cabbage (Brassuca campestris spp. Pekinensis) in Cd-contaminated soil. Environ Sci Pollut Res. 2018, 25: 15823-15829

                  39. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments. 2018, 18(9): 2948-2959

                  40. Efficiency of C3 and C4 plant derived-biochar for Cd mobility, nutrient cycling and microbial biomass in contaminated soil. Bull Environ Contamin & Toxicol. 2018, 100(6): 834-838

                  41. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil. Chemosphere. 211: 632-639

                  42. Comparative efficiency of rice husk derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by chinese cabbage in highly contaminated soil. Int J Phytoremediat. 2018, 20(12): 1221-1228

                  43. Biochars immobilize Pb and Cu in naturally contaminated soil. Environ Engineering Sci. 2018, 35(12): 1349-1360

                  44. Lateral and longitudinal variation in phosphorus fractions in surface sediment and adjacent riparian soil in the Three Gorges Reservoir, China. Environ Sci Pollut Res. 2018, 25(31): 31262-31271

                  45. Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage and improved biochemical properties in naturally co-contaminated soil. J Soils Sediments. 2019. 19: 2381-2391

                  46. Co-pyrolysis biochar derived from rape straw and phosphate rock: carbon retention, aromaticity and Pb removal capacity. Energy and Fuels. 2019, 33(1): 413-419

                  47. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J Environ Manage. 2019, 237: 5-14

                  48. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bullet Environ Contamin Toxico. 2019,https://doi.org/10.1007/s00128-019-02573-6

                  49. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Journal of Hazardous Materials. 2019, 371: 191-197.

                  50. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils. Ecotoxicology and Environmental Safety. 2019, 174: 401-407

                  51. Influence of low molecular weight organic ligands on the sorption of heavy metals by soil constituents: A review. Envir Chem Letters. 2019, Doi: 10.1017/s10311-019-00881-1

                  52. Two years impacts of rapeseed residue and rice straw biochar on Pb and Cu immobilization and revegetation of naturally co-contaminated soil. Applied Geochem. 2019. Doi: 10.1016/j.apgeochem.2019.04.011


                  研究生培養

                  已畢業碩士56人(留學生2人),博士20人(留學生6人)。在讀碩士生9人,博士生7人(留學生1人)。

                  上一篇:胡承孝

                  下一篇:徐芳森


                  广东十一选五走势图